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Abstract One of the necessary techniques for constructing a virtual museum is to estimate
the surface normal and the albedo of the artwork which has high specularity. In this paper,
we propose a novel photometric stereo method which is robust to the specular reflection
of the object surface. Our method can also digitize the artwork arranged inside a glass or
acrylic display case without bringing the artwork out of the display case. Our method treats
the specular reflection at the object surface or at the display case as an outlier, and finds a
good surface normal evading the influence of the outliers. We judiciously design the cost
function so that the outlier will be automatically removed under the assumption that the
object’s shape and color are smooth. At the end of this paper, we also show some archived
3D data of Segonko Tumulus and objects in the University Museum at The University of
Tokyo that were generated by applying the proposed method.

Keywords Photometric stereo - M-estimation

1 Introduction

It is abenefit to society to allow people to become familiar with precious artworks in muse-
ums by broadcasting these objects through the Internet or mobile phones. We can do this by
digitally archiving these works. However, these precious objects are exhibited inside glass
display cases and are not allowed to be removed from these cases. We propose a method to
estimate the surface normal and the albedo of these objects without removing them from the
display case.
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Fig. 2 Flow diagram. We first subtract the image under the light when it is off from the images under the
light when it is on. We apply our median photometric stereo method to the subtracted images.

If we take a photograph of such objects in a well-lighted museum, we also observe the
scene reflected by the display case. Many researchers have proposed methods to separate
such reflections [14,52,59,51,47,27,28,48,41]. To add to the complication of separating
the object from itsreflection, if we illuminate the object by alamp, the light is also reflected
at the surface of the glass. In this paper, we partially remove the reflection at the glass
surface, and estimate the surface normal and the albedo of the object by using photometric
stereo. Our method assumes that the target object has both diffuse reflection and specular
reflection.

The problem we are addressing in this paper is the situation when the object is set inside
atransparent display case, as is shown in Fig. 1. The foreground, the scene in front of the
object, is reflected at the transparent surface. The background, the scene behind the object,
is transmitted through the transparent surface. The light illuminating the object also reflects
at the transparent surface. The goal of this research is to estimate the surface normal of the
object covered by a planar transparent surface.

The flow of the proposed algorithm is shown in Fig. 2. First, we take multiple images of
the object under a different single light source. The image includes not only the object and
the background but also the light and the foreground (Fig. 1). In this paper, we remove the
foreground and the background by using a simpler method than previous methods. However,
after this process, the output image still includes the reflection of the light as well as the
object; thus, we cannot apply conventional photometric stereo. Therefore, we use so-called
“four-light photometric stereo [10,56,4,9].” Four-light photometric stereo can be applied
to specular objects; however, it cannot be applied to specular objects kept inside a display
case. Therefore, we use five or more lights. If we use four lights, we obtain four candidates
for surface normal. Four-light photometric stereo, originally proposed by Coleman and Jain
[10], investigated the rule for estimating the surface normal using these four candidates. Our



algorithm, called “median photometric stereo,” provides a framework for determining the
surface normal when we have more than four candidates.

Some photometric stereo methods use multiple images to enhance the quality of the
output. Hayakawa [20] proposed an uncalibrated photometric stereo using singular value
decomposition (SVD) based on the method proposed by Woodham et al. [68]. Yuille et
al. [73] analyzed Hayakawa's method, and proposed a method to solve the bas-relief ambi-
guity. While Hayakawa's method assumes a directional light source, Kim and Burger [24]
estimated the position of the point light source. Basri et al. [5] used spherica harmon-
ics to apply uncalibrated photometric stereo to arbitrary illumination. Sato et al. [50] used
ISOMAP to estimate the surface normal of an object with specular reflection that follows
the Torrance-Sparrow reflection model. Tan et al. [60] enhanced the resolution of the sur-
face normal by using photometric stereo. Chandraker et al. [8] removed the shadow by
using the graph cut method, and estimated the surface normal robustly from only four im-
ages. Wu et al. [71,62,69] used the graph cut method and the belief propagation method in
order to estimate the smooth surface. Wu and Tang [70] estimated the surface normal and
the albedo robustly using the Expectation-Maximization algorithm. Sato and Ikeuchi [49]
applied the photometric stereo to a huge outdoor object. Some photometric stereo methods
can be applied to non-Lambertian objects [44,61]. Hertzmann and Seitz [21] used a spheri-
cal object colored with the same paintings as the target object, and they robustly estimated
the surface normal of the object. Goldman et al. [17] estimated the BRDF (bidirectional
reflectance distribution function) of the object’s surface using photometric stereo, under the
condition that the BRDF can be categorized into two types or a combination of those types.
Luand Little[32] and Shen et al. [54] also estimated both the surface normal and the BRDF.
Helmholtz stereo [33, 75,65, 76] applied stereo and photometric stereo to a non-Lambertian
model. Alldrin et al. [3] applied photometric stereo to non-Lambertian objects with a dif-
ferent approach from Helmholtz stereo. Photometric Sampler can also estimate the surface
normal of specular objects [36]. Narasimhan et al. [35] proposed that the surface normal of
an object that is placed inside a scattering medium can be estimated from five light sources.
In this paper, we propose arobust photometric stereo method for a Lambertian object under
the condition that only asmall number of imagesis supplied. This sparse photometric stereo
method is useful in awide field of applications such as applying it to arobot’s eye for object
recognition, obtaining the surface normal in a small space by a gastrofiberscope, using it to
create a handheld 3D scanner for entertainment, and so on.

The basic idea of our approach is the same as the successful algorithm called Shadow-
Cuts [8]. We believe that this idea employed by us and Chandraker et al. [8] is the most
beneficial ideafor solving the sparse photometric stereo problem. Each pixel isilluminated
by several light sources, and there is a combination of light sources that produces the best
result. A notable difference is that ShadowCuts chose the surface normal using an image
irradiance eguation, while we choose it using a geometric property, namely, the smooth-
ness constraint. If there is an error in the light source direction, ShadowCuts estimates the
wrong surface normal due to bas-relief ambiguity [7]. If the object surface can be assumed
as smooth, our method is more useful than ShadowCuts.

We describe the separation method of the reflection in Section 2. We propose the me-
dian photometric stereo method in Section 3. We discuss how many lights are needed to
remove the specularities in Section 4. We present some experimental results in Section 5,
and conclude the paper in Section 6.



2 Removing Ambient Light Reflected at a Transparent Surface

Asisshown in Fig. 1, the observed image includes foreground, background, light, and ob-
ject. The scene in front of the display case is reflected, and is observed as a foreground.
Thelight isalso reflected at the display case. We observe the scene behind the display case,
defined as a background. The object is also affected by ambient light. In addition, some ad-
ditional value is detected by the camera due to its dark current. Moreover, some amount of
light reaches to the background. By considering these effects, the observed image with the
light on (Zon) can be formulated as follows:

Ion = Iforeground,ambient + Ibackground,ambient + Ibackground,light

+ ]light + Iobject,light + [object,ambient + Tqark (1)

Where Iioreground,ambient 'EPresents the scene in front of the display case reflected at the
transparent surface, I;,.1,; represents the light coming from the lamp and reflecting at the
transparent surface, and I, represents the dark current of the camera. The object and the
scene behind the object are illuminated by both the lamp and the surrounding environment.
The brightness of the object illuminated by the lamp is expressed as I,y ject, light @nd that il-
luminated by the surrounding environment is expressed as Iopject,ambient - 1€ background,
or the scene behind the object, istransmitted through the transparent surface. The brightness
of the background illuminated by the lamp is expressed as Iy, ckground, light and that illumi-
nated by the surrounding environment is expressed as I, ckground,ambient - 1€ SUrrounding
environment contains both the foreground and the background and is called the ambient
light. We assume that the dark current in a camera is contaminated by the camera noise
which can be represented as a white noise (Gaussian noise). We take multiple images and
calculate their average; thus, the noise (i.e., dark current) can be represented as a constant
value.

Next, we take an image with the lamp switched off. In this case, the observed light will
be

Iog = Iforeground,ambient + Ibackground,ambient
+ Iobjcct,alnbicnt + Idark . (2)

The difference between Eqg. (1) and Eq. (2) can be expressed as follows if both values are
not saturated:

Ion — Ioff = Ilight + Iobject,light + Ibackground,light . (3)

These two images are taken from the same camera with fixed position and fixed camera set-
tings. The background does not affect the appearance of the object; thus, only the object and
thelight are obtained from the pixelsin the object region. We find that the image represented
by Eq. (3) does not have the effect of ambient light, foreground, or background. In addition,
we take multiple images and calculate their average also for Ig¢. Thus, the image repre-
sented by Eq. (3) has no dark current. The influence of the room light disappearsin Eq. (3),
and we can measure the object whether the room light is on or off. However, in practice,
the specular reflection of the abject caused by the room light will often be saturated, so it
is better to switch off the room light in some situations. Through this procedure, we can
separate the effect of the light source and the effect of ambient light (Fig. 3). The separation
in our caseisdifferent from the previously mentioned separation methods[14,52,59,51,47,
27,28,48,41], which separate the foreground and the background, since the light reflecting
at the transparent surface I, can be regarded as the foreground.
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Fig. 3 Separation result: (8) Input image with the light on, Ioy, (b)(d) input image with the light off, I,
(brightnessis multiplied by 4 for visibility), and (c) separated image with the light and the object, Ion — Iog-
(e) is the fOregrOUnd image, ]foreground,ambientv and (f) is the ba:kground immev Ibackground,ambient-
These two images are only shown for reference for the readers, and are not used in this method.

In the field of shape-from-shading research, calculating the difference between the light-
on image and the light-off image is used as a preprocessing step for removing the dark
current and the ambient light. Effectively using the light-on image and the light-off image is
simple but beneficial, and it is also used aggressively in recent research [45,57,42,13,31].
Therefore, we use this method for separation.

The image represented by Eq. (3) contains not only the object Iopject 1ight UL @S0 the
light Ijjg1¢; thus, we cannot apply conventional photometric stereo. The direct reflection of
the light on the display surface Iy;,1, iStoo bright, and ordinary polarizers cannot completely
remove the reflection. In our experiment, we avoid saturation of the diffuse reflection com-
ponent Igifuse (Where Iopject tight = Ispecular + Idiftuse); however, the direct reflection of
the light I;41,, Often causes saturation. Section 3 presents a method to estimate the surface
normal and the albedo even if the pixels that contain the reflection of light Jj;ght OF Ispecular
are saturated. If we need to analyze the specular reflection of the object, we carefully avoid
its saturation.

3 Median Photometric Stereo
3.1 M-Estimation Using Laplace Distribution

We obtain L number of brightnesses per pixel from L number of input images. L number of
brightnesses sometimes includes the specular reflection or the shadow. Therefore, we adopt
astrategy to calculate the optimal surface normal and albedo through iterative computation.
First, we explain the smoothness constraint of the albedo p. The albedo is expressed by
three values, namely RGB channel, and the proposed algorithm is applied per channel. By

minimizing
epave = (p2(@,9)* + (py(2,9)* | @



we obtain the following albedo p

p(z,y) = average(p(z + 1,y), p(x — 1,9), p(x,y + 1), p(z,y — 1)) . ®)

Eq. (5) is derived by the discussion presented in Appendix A.

Eq. (4) uses L2-norm, which meansthat it uses Gaussian distribution as the M-estimator
[43]. This M-estimator is not robust to outliers. We use Laplace distribution (double ex-
ponentia distribution) as the M-estimator, which is more robust than Gaussian distribution
[43]. In this case, the smoothness constraint of the albedo is represented as the following
L1-norm.

€p,med = |pz(x,y)\ + |Py(fﬂ’y)‘ . (6)
The albedo p that minimizes this equation would be

p($,y) = median(p(m + 1ay)7p($ - 1,y),p(a¢,y + 1),p(x,y - 1)) . (7)

Eq. (7) is derived by the discussion presented in Appendix B.

Next, we explain the optimization of the abedo. We represent the L number of input
images with the subscript ¢ = {1,..., L}. Since there are some outliers, such as shadows,
we use Laplace distribution as the M-estimator.

L

Ep,opt = E

i=1

PG|

(8)

where S; represents the direction of the light source, which is given a priori, and N rep-
resents the surface normal. By fixing the surface norma N, the albedo p which minimizes
Eq. (8) will be given asfollows:

p= median(

S..iN‘i:I,...,L). 9)

The overall cost for estimating the albedo is as follows:

ep = // €p,0opt + Ap,med€p,med + Ap,avgep avgdrdy (20

where A, eq @nd Ap avg are the user-defined constant values representing the smoothness
of the object’s surface. By increasing A, meq, the method will be robust to outliers, and by
increasing Ay, avg, the method will be robust to local minima

Finally, we explain the optimization of the surface normal. In order to calculate the
surface normal by photometric stereo, we need at least three data sets. The number of al

combinations for selecting the three data sets from L datais ,C3 = (é) We represent

each surface normal estimated from each combination as N,,(m = 1,. .., Cs). Each sur-
face normal is calculated by conventional photometric stereo [67]. We estimate the surface
normal by minimizing the following formula

rCs
EN,opt = Z |N_Nm| . (11)

m=1

The surface normal is expressed by three values, namely, the XY Z axis, and the proposed
algorithm is applied per axis. We cal culate each element of normal vector one by one; thus,
minimizing Eq. (11) resultsin the following formula (Fig. 4):

N = median (N, ‘ m=1,...,.,Cs). (12
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Fig. 4 Estimating the surface normal by taking the median of candidate surface normals.

Therefore, the overall cost for estimating the surface normal is as follows:

EN = // EN,opt + )‘N,mchN,mcd + )‘N,anEN,andwdya (13)

where AN med @nd An ave are the user-defined constant values representing the smoothness
of the object’s surface. By increasing Ax med, the method will be robust to outliers, and by
increasing An, ave the method will be robust to local minima.

We first minimize Eq. (13) until convergence in order to estimate the surface normal.
Eq. (13) only depends on the surface norma and the input data; thus, its convergence is
guaranteed. After convergence, we minimize Eq. (10) until convergence in order to estimate
the albedo. Although Eq. (10) also depends on the surface normal, we use the estimated
surface normal, which is treated as a constant value during this step; thus, its convergenceis
guaranteed.

3.2 Proposed Algorithm

Let us organize the algorithm. First, we set the appropriate initial values for the surface
normal and the albedo. We utilize conventional photometric stereo [67] to calculate the
initial values from the whole input images athough the images contain specular reflections
and shadows.

Next, we calculate al ;,Cs number of candidates of the surface normal for all pixels.
Here, we represent a set of three light sources as follows:

{i,j,k} e M, (14
where
IM| = C3 (15)
ie{l,...,L} (16)
je{l,...,L} (17)

ke{l,... L}. (18)



The candidate surface normal is calculated as follows:

St o I;
Nm = | ST L. (19)

S% I,
If the invert matrix does not exist, we set alarge number for N,, so that it can be judged as
an outlier.

In order to estimate the surface normal, we iterate the following process until conver-
gence:

1. Weinitialize aset of candidates.
A —0.
2. We add the surface normal calculated from input images to the set of candidates.
A<—AU{Nm ’ m:l,...,LC:;}.
3. We also add the neighboring surface normals weighting with an integer value [ Ax med] -
A<—AU U {N(m+1,y),N(m—1,y),N(m,y+1),N(x,y—1)}
[AN, med ]
4. We calculate the median of the set.
Nopt = median(A).
5. We also calculate the average of the neighboring surface normal.
Navg = i (N(z+1Ly)+ N(@—1,y) + N(z,y + 1) + N(z,y — 1)).
6. We calculate the weighted sum for the final surface normal and normalize it.

N, A i\
N = normalize ( opt + AN avg Vavg )
1+ )\N,avg

The above calculation is done for each pixel. After calculating all pixels, we calculate this
step again. Iterations stop when the average change of the surface normal between the cur-
rent step and the previous step is less than the convergence criterion.

After that, we also estimate the albedo by iterating the following process until conver-
gence:

1. Weinitialize a set of candidates.

A —0.
2. We add the albedo calculated from input images to the set of candidates.
A AU{T |i=1,....L}.

S; - N
3. We also add the neighboring albedos weighting with an integer value [\, med |-
A—Au | A{p@+1,9),p - 1y),p(z,y+1),plx,y — 1)}

[Ap,med ]
4. We calculate the median of the set.

popt = median (A).
5. We also calculate the average of the neighboring albedo.
1
pavg = 7 (p(z + 1,y) + p(z = L,y) + p(z,y + 1) + p(z,y — 1)).
6. We calculate the weighted sum for the final albedo.
_ Popt + Ap,avgPave
1+ Ap,avg '
The above calculation is done for each pixel. After calculating all pixels, we calculate this
step again. Iterations stop when the average change of the albedo between the current step
and the previous step is less than the convergence criterion.
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Fig. 5 The principle of measuring the surface normal by photometric stereo using five light sources.

Finally, the surface normal is integrated to the height map by the relaxation method
(i.e., Poisson solver) while enforcing the natural boundary condition [23,22]. The relaxation
method is one of the best methods for surface reconstruction if the surface is continuous and
the noise function of the estimated surface normal is uniform through each pixel. However,
if the surface is discontinuousin asmall area or the estimated surface normal has an outlier,
another robust method such as the method proposed by Agrawal et al. [2] is more useful.
We assume the object is continuous and the noise function of each pixel is uniform, thanks
to our robust method of estimating the surface normal; thus, we use the relaxation method.

In our agorithm, the surface normal and the albedo are updated using four-neighbor
information in order to avoid falling into a local minimum. RANSAC [15] is a famous
technique to remove the outliers; however, if the input images are small (i.e., if L issmall),
we can calculate al 7, C3 candidates and remove the outliers more robustly. If the number of
theimagesislarge, calculating all candidatestakesalongtime (;,Cs = L(L—1)(L—2)/6 ~
O(L?)); thus, RANSAC is more effective than our approach in such a case. Mukaigawa et
al. [34] removed the outliers from many input images using RANSAC, and generated the
images to which the photometric stereo can be applied.

Barsky and Petrou [4] used color information [26] in order to detect the specular pixels.
This approach has aproblem in that it cannot be applied if the object iswhite or the specular
pixel is saturated, so we do not adopt this approach. Barsky and Petrou also used another
type of agorithm to detect the specular pixel, which reinforces the idea that their color
information approach is not always applicable.

Conventional binocular stereo cannot be applied because the specular reflection inter-
fereswith finding the corresponding points. Our method treats the specular reflection and the
shadow as outliers. Therefore, our method can estimate the surface normal and the albedo
even if the specular pixels are saturated. There are many methods to separate diffuse re-
flection and specular reflection; however, most of them cannot be applied if the pixel is
saturated, and most of them cannot be applied if the object is white. We assume that the
direction of the light sources is known; thus, we can estimate the orientation of the glass
case and detect the reflection of the display case. However, we do not estimate it. Even if
we detect the reflection of the display case, we cannot detect the specular reflection of the
object and the shadow; thus, we propose the outlier removal algorithm.
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(b) 45°

(c) 60° (d) 75°

Fig. 6 Gaussian sphere of the object surface when illuminated by five lights. Cases when the angle between
the light and the camerais (a) 30°, (b) 45°, (c) 60°, and (d) 75°.

4 Analysis of Gaussian Sphere
4.1 Five-Light Photometric Stereo

Considering the reflection at the glass case, five lights give agood result in practice (Fig. 5).
We will explain the detail below by using a Gaussian sphere viewed from above (Fig. 6).
Five lights are placed as an equilateral pentagon. Fig. 6 (a8)—(d) shows the Gaussian spheres
when the angle between the light source and the viewing direction is 30°, 45°, 60°, and 75°,
respectively. The marked circle represents the specul ar reflection of the object’s surface. The
numbers represent the numbers of the lights that illuminate the surface. In the case of “30°,
all regionsareilluminated by three or more lights; thus, the surface normal can be calculated
in all regions. The specular reflection of the object’s surface appearsin region “5”; thus, we
have four input data sets to calculate the surface normal. Even if the specular reflection
of the glass display appears in region “5,” we have three input data sets to calculate the
surface normal. Region “2,” which isilluminated by only two lights, appearsin case “45° .
However, the observed area is small, and we can interpolate from neighboring pixels. The
area of region“2" becomeslarger in case“60°." Consequently, if the angle between the light
source and the viewing direction is less than 45°, we can estimate the surface normal and
the albedo from five lights.

The above discussion considers the attached shadow, while the cast shadow is not con-
sidered. It also assumes the specular spike but not the specular lobe [38]. In addition, we do
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(b) 45°

() 60° (d) 75°

Fig. 7 Gaussian sphere of the object surface when illuminated by eight lights. Cases when the angle between
thelight and the camerais (a) 30°, (b) 45°, (c) 60°, and (d) 75°.

not know which region each pixel belongs to when the surface normal is unknown. There-
fore, we have proposed an iterative algorithm in Section 3.

4.2 Eight-Light Photometric Stereo

Practically, five lights are enough to estimate a specular object kept inside a glass case. How-
ever, some part of the object is only illuminated by two light sources. In order to overcome
this problem, we have to increase the number of the light sources. If the specular object is
not kept inside a glass case, six lights are enough for the measurement [58]. In this section,
we show that eight lights are enough if the specular object is kept inside a glass case.

The Gaussian spherein this case is shown in Fig. 7. Eight lights are placed as an equi-
lateral octagon. According to the figure, any part of the whole object surface isilluminated
by at least four light sources. The specular reflection of the object appearsinregion“5” (and
“7, “8"), and it does not appear in region “4.” Therefore, even if the glass reflection appears
inregion “4" or “5," at least three diffuse pixels can be obtained at such regions; thus, we
can estimate the surface normal for every region.

The orientation of the light source can be represented as follows:

sin 6 cos ¢
( sin 6 sin ¢ ) . (20)

cos 6
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Fig. 8 Experimental setup.

If the light source can be represented by the above formula, the position of the specular
reflection on the Gaussian sphere can be represented by the following:

sin(6/2) cos ¢
sin(0/2)sin¢g | . (21)
cos(6/2)

Suppose that we it the object by the light sourceswhere ¢ = 0°, +45°, +£90°, £135°, 180°.
Let us consider the specular reflection caused at ¢ = 0°. The specular reflection occurs
in region “5,” and is lit by the light sources that are placed at ¢ = 0°,+45°, +90°. Now,
we derive the inclination angle of the light source 6 when this region becomes region “3.”
This region “3” is only illuminated by the light sources that are placed in ¢ = 0°,+45°.
Therefore, 6 is derived as follows:

sin 6 cos £90° sin(0/2) cos 0°
sin@sin £90° | - | sin(6/2)sin0° | = 0. (22)
cos cos(0/2)
The above equation is simplified as follows:
cos B cos(0/2) = 0. (23)

The solution of this equation is # = £90°, £180°; however, in this case, the solution is
6 = 90°. Therefore, if the light source is set on the same side as the camera, there exists no
region “3.” To conclude, eight lights are enough in order to estimate the surface normal of
specular objects kept inside a transparent display case, if the light sources are not set behind
the objects.

The above discussion assumes that the specular reflection is a perfect mirror reflection.
Usually, the object has widely spread specular reflection. In order to prevent the overlap of
specular reflection as much as possible, the eight lights should be placed as an equilatera
octagon. In addition, the angle between the light and the camera should be large.

5 Experimental Result
5.1 Experimental Setup

The experimental setupisshowninFig. 8 and Fig. 9. Thetarget object is covered with aglass
or acrylic display case, and is observed with one camera and five or more lamps. LED lamps
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Fig. 9 Measurement system “Photometric Star.”

(R
(@ (b)

Fig. 10 Input images: (a) The images taken with the light on, (b) one of the images taken with the light off.

or fluorescent lamps are more appropriate than incandescent lamps since precious artworks
would be sometimes damaged by far-infrared light or deep-ultraviolet light. However, the
experiments in this paper use incandescent lamps. The camera is fixed, and we take the
image with three-band RGB. The light source direction is obtained a priori from the mirror
sphere. Thelight source brightnessisobtained apriori by illuminating awhite diffuse object.
We take four or more images for a diffuse-only object, and take five or more images for
an object that includes specularities. For each shot, we take both the image with the light
switched on and the image with the light switched off. Each face of the display case should
be transparent, and its thickness and orientation are unknown. However, we assume that the
display case is a box-type object structured by transparent planes with uniform thickness.

5.2 Evaluation

Fig. 10 is the input image and Fig. 11 is the separated result. Fig. 12 (8)—(c) are the es-
timated albedo, height, and shape, respectively. Fig. 13 is an example image rendered by
using estimated parameters with a different viewpoint and different light direction from the
acquisition stage. In Fig. 12 (c), we did not remove the background; however, it can be eas-
ily removed by simply thresholding the dark brightness of the background, or using region
segmentation techniques such as Lazy Snapping [29], GrabCut [46], or Adobe Photoshop
[1]. All resultsin Fig. 12 are obtained from five input images.

Fig. 14 shows the result of applying conventional photometric stereo using only three
images under three different lights. The conventional photometric stereo cannot handle the
reflection at the display case or the specular reflection of the object surface; thus, it isimpos-
sible to estimate the true surface normal and albedo. The conventional photometric stereo is
not robust; thus, it is affected by the error in the brightness of the light source. Calibrated
photometric stereo assumes the light source direction and the brightness are known. Al-
though we compensated for these factors before the experiment, some amount of the error
of the compensation still remains as anoise.

Fig. 15 shows the result of light-stripe range scanning (active stereo). We scan from
exactly the front of the acrylic box with a Konica Minolta VIVID 910 [25]. Owing to the
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Fig. 11 Separation result: (a) Theimages that only contain the object and the light, (b) one of theimages that
contain the foreground and the background.

Fig. 12 Estimated result: (a) Albedo, (b) height, (c) shape.

Fig. 13 Rendered image with a different viewpoint and light direction from the acquisition stage.
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Fig. 15 Theresult of light-stripe range scanning: (a) Setup, (b) estimated shape.

Table 1 Evauation.

Height error  Normal error
(RMSE) (RMSE)
Light-stripe 2.43cm 36.0°
range scanning
Conventional 1.32cm 28.7°
photometric stereo
Proposed method 0.86cm 10.1°

reflection from the acrylic surface, the sensor cannot obtain the true shape. However, the
sensor can possibly determine the shape if it is observed on a slant. The proposed method
can estimate the shape by observing the object not only from the front of the case but also
from a slanting direction.

Fig. 16 (b) shows the result of our method applied to an object 15 cm tall, from six input
images. Fig. 16 (a) is a ground truth obtained by scanning the object brought out from the
acrylic case by VIVID910. Fig. 16 (c) isthe result of conventional photometric stereo from
three certain input images. Fig. 16 (d) is the same as Fig. 15. The comparison in Table 1
shows that the proposed method is more effective than the other methods. Fig. 16 (e) (3)
represents the height error, and we can find out that the estimated shape is bent. The dis-
tortion is caused when the height is calculated from the surface normal. A possible solution
would be to combine the proposed method with a stereo method. Fig. 16 (€) (4) represents
the surface normal error, and we find out that the error is caused at the concave part. This
error is caused by the cast shadow, the interreflection, and the smoothness constraint. A
possible solution would be to remove the cast shadow from many light sources or to apply
interreflection-removing algorithms.
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(a) (b) (©) (d)

(e) ® (®

Fig. 16 Comparison: (a) True value, (b) the result of the proposed method, (c) the result of conventional
photometric stereo, (d) the result of light-stripe range scanning, (€) the error of the proposed method, (f)
the error of conventional photometric stereo, (g) the error of light-stripe range scanning; (1) Azimuth angle
(white: upper direction, black: lower direction) (2) zenith angle (black: 0°, white: 90°) (3) the difference of
the height (the brighter the noisier), (4) the difference of the surface normal (the brighter the noisier).

5.3 Application to Museum

Photometric stereo is effectively used for digital archiving of artworks[63,19]. For the start-
ing point of the virtual museum project, we went to The University Museum located at The
University of Tokyo, in order to verify our method. We digitized ashell collected in Australia
caled “chlamys australis,” which is kept in an acrylic display case (Fig. 17). This colorful
shell isakind of scallop, and tastes better than commonly consumed scallops. We took six
images for reconstructing the surface. The result is shown in Fig. 18. The wavy surface of
the shell is clearly modeled by the proposed method.
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Fig. 17 The University Museum, The University of Tokyo: (a) Scanning setup, and (b) the chlamys australis
shell.

Fig. 18 Theresult of applying our method to the shell.

5.4 Application to Segonko Tumulus

We also applied our method to acultural asset called the Segonko Tumulus, which islocated
in the Kumamoto prefecture in Japan (Fig. 19). The tumulus was built around A.D. 500. Its
wall is not only carved but also painted with red, green, and yellow. To preserve the current
state of the painting, the tumulus is not open to the public; thus, providing it digitally for
common view isimportant.

We devel oped two types of systems: The Photometric Diamond, shownin Fig. 20 (a) and
the Photometric Wing, shown in Fig. 20 (b), where both have eight lights. The Photometric
Wing proved to be better since it has a wide baseline and the weight is light. The light
sources are not placed completely evenly in this system. The target object is not kept in a
display case, and it is amost flat; thus, there is no problem in using a system whose lights
are not placed in an equilateral octagon.

Thetumulusisavery small chamber, and only one or two people can goinside (Fig. 21).
It is difficult to illuminate the wall with alarge number of light sources. A system that has
only eight lightsis useful for these kinds of small places.

The input images are shown in Fig. 22 (a). The images rendered from the estimated
albedo and the surface normal are shown in Fig. 22 (b). A typhoon attacked us on the first
day of our scanning mission. We captured the images another day; however, the wall was
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(a) (b)

Fig. 19 Segonko Tumulus: (a) Replica, and (b) inside the tumulus.

(b)

Fig. 20 Measurement system used for Segonko Tumulus: (a) Photometric Diamond, and (b) Photometric
Wing.

Fig. 21 The measurement system capturing images inside the small cave.

wet. The specularities occurred on the surface of the wall, but our method was not affected
by such specularities. Note that the specularities are removed in Fig. 22 (b).

The result of applying our method to the carvings in the Segonko Tumulusis shown in
Fig. 23. We can clearly detect the holein the center of the concentric circles, and we can give
evidence to the opinion of the archaeol ogist that the circle was carved by using compasses.
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Fig. 22 (@) Input images, and (b) rendered images of Segonko Tumulus.

Fig. 23 Shape estimation results of Segonko Tumulus.

6 Conclusion

In this paper, we propose a method for digitizing artworks to be included in a virtua mu-
seum. The proposed method can digitize artwork that is kept inside a glass display case as
well as outdoor cultural assets. In this paper, we describe how to improve photometric stereo
so that it will be less affected by specularities and shadows.

Binocular stereo cannot be applied if there is areflection at the display case or if there
is a specular reflection at the object’s surface. However, after generating the diffuse-only
images by our method, we can apply binocular stereo. A light-stripe range sensor cannot
estimate the object’s shape if the object is observed from the front of the display case, but
our method can do this. We are now planning to estimate a more precise shape by observing
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the object from multiple viewpoints with amethod combining photometric stereo and multi-
view stereo [30,74,18].

We propose an agorithm that can be applied to the input image taken with a machine
like those shown in Fig. 9 and Fig. 20. While the current method is adequate when the
number of lightsis small, if we could increase the number of lights, we could obtain much
more information [20, 73,55, 12,6,16]. Our method assumes that the diffuse reflection can
be modeled as a Lambertian model; extending our method to other reflection models would
also beimportant. The quality of the shape would increase by considering theinterreflection;
thus, it might be improved by applying the solutions suggested by [37,66,53,39,72].

The proposed method can be applied to an object that is not covered by a display case,
and it can be applied also to specular objects. Our optimization algorithm isrobust to outliers
caused by specular reflection or shadow. We can also remove the effect of dark current and
ambient light. The method can be applied in a variety of applications, and this warrants
further investigation.

Acknowledgements This research was supported in part by the Ministry of Education, Culture, Sports,
Science and Technology under the Leading Project, “Development of High Fidelity Digitization Software
for Large-Scale and Intangible Cultural Assets” SONY XCD-X710CR, FUJNON lens, TECHNO SCOPE
CFW-46, Chori Imaging VFS-42, SHARP laptop PC, LPL lamp holder, SLIK and ETSUMI camera plates,
Edmund Optics articulated arms, Velbon tripods, L absphere white reference, and TOKY U HANDS specular
sphere were used in the experiment. KONICA MINOLTA VIVID 910, the alignment software developed
by Oishi et al. [40], and the camera calibration [64] software developed by Ryo Kurazume, Hiroki Unten,
Ryo Ohkubo, Fujitsu Ltd., and Atsuhiko Banno, were used in the evaluation. Fast algorithm for calculating
the median introduced by Press et al. [43] is used. The measurement of “chlamys australis’ was supported
by Hirdy Miyamoto and The University Museum, The University of Tokyo. The measurement of “ Segonko
Tumulus’ was supported by Nobuaki Kuchitsu, Kumamoto Prefectural Board of Education, and Toppan
Printing Co., Ltd. The authors thank Joan Knapp for proofreading and editing this manuscript. They also
thank anonymous reviewers for their careful reviews of the paper.

References

1. Adobe Photoshop, http://www.adobe.com/products/photoshop/ (ADOBE)

2. A.K.Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from agradi-
ent field?,” in Proceedings of European Conference on Computer Vision, pp. 578-591 (2006)

3. N. Alldrin, T. Zickler, and D. Kriegman, “Photometric stereo with non-parametric and spatially-varying
reflectance,” in Proceedings of |EEE Conference on Computer Vision and Pattern Recognition (2008)

4. S. Barsky and M. Petrou, “ The 4-source photometric stereo technique for three-dimensional surfacesin
the presence of highlights and shadows,” |IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 10, pp. 1239-1252 (2003)

5. R. Basri, D. Jacobs, and |. Kemelmacher, “ Photometric stereo with general, unknown lighting,” Interna-
tional Journal of Computer Vision, vol. 72, no. 3, pp. 239-257 (2007)

6. N. Birkbeck, D. Cobzas, P. Sturm, and M. Jagersand, “Variational shape and reflectance estimation under
changing light and viewpoints,” in Proceedings of European Conference on Computer Mision, pp. 536—
549 (2006)

7. P.N. Belhumeur, D. J. Kriegman, and A. L. Yuille, “The bas-relief ambiguity,” International Journal of
Computer Vision, vol. 35, no. 1, pp. 33-44 (1999)

8. M. Chandraker, S. Agarwal, and D. Kriegman, “ShadowCuts: Photometric stereo with shadows,” in
Proceedings of |EEE Conference on Computer Vision and Pattern Recognition (2007)

9. C. P.Chenand C. S. Chen, “The 4-source photometric stereo under general unknown lighting,” in Pro-
ceedings of European Conference on Computer Mision, pp. 72—-83 (2006)

10. E. N. Coleman Jr. and R. Jain, “Obtaining 3-dimensional shape of textured and specular surfaces using
four-source photometry,” Computer Graphics and Image Processing, vol. 18, no. 4, pp. 309-328 (1982)

11. R. Courant and D. Hilbert, Methods of mathematical physics, p. 560. Wiley, New York (1953)

12. M. S. Drew, “Reduction of rank-reduced orientation-from-color problem with many unknown lights to
two-image known-illuminant photometric stereo,” in Proceedings of International Symposium on Com-
puter Vision, pp. 419-424 (1995)



21

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

35.

36.

37.

38.

39.

E. Eisemann and F. Durand, “Flash photography enhancement via intrinsic relighting,” ACM Transac-
tions on Graphics, vol. 23, no. 3, pp. 673-678 (2004)

H. Farid and E. H. Adelson, “Separating reflections from images by use of independent component
analysis,” Journal of the Optical Society of America A, vol. 16, no. 9, pp. 2136-2145 (1999)

M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with ap-
plications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395 (1981)

A. S. Georghiades, “Incorporating the Torrance and Sparrow model of reflectance in uncalibrated pho-
tometric stereo,” in Proceedings of IEEE International Conference on Computer Vision, pp. 816-825
(2003)

D. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from
photometric stereo,” in Proceedings of | EEE International Conference on Computer Vision, pp. 341-348
(2005)

P. Fuaand Y. G. Leclerc, “Object-centered surface reconstruction: combining multi-image stereo and
shading,” International Journal of Computer Vision, vol. 16, no. 1, pp. 35-56 (1995)

D. V. Hahn, D. D. Duncan, K. C. Baldwin, J. D. Cohen, and B. Purnomo, “Digital Hammurabi: design
and development of a 3D scanner for cuneiform tablets,” in Proceedings of SPIE, vol. 6056, pp. 130-141
(2006)

H. Hayakawa, “Photometric stereo under a light source with arbitrary motion,” Journal of the Optical
Society of America A, vol. 11, no. 11, pp. 3079-3089 (1994)

A. Hertzmann and S. M. Seitz, “Example-based photometric stereo: Shape reconstruction with gen-
eral, varying BRDFs,” |EEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,
pp. 1254-1264 (2005)

B. K. P. Horn, Robot vision, p. 509. MIT Press, Cambridge Mass. (1986)

K. Ikeuchi, “Reconstructing a depth map from intensity maps,” in Proceedings of International Confer-
ence on Pattern Recognition, pp. 736-738 (1984)

B. Kim and P. Burger, “Depth and shape from shading using the photometric stereo method,” CVGIP:
Image Understanding, vol. 54, no. 3, pp. 416-427 (1991)

KonicaMinoltaVIVID 910, http://www.minolta3d.com/products/vi910-en.asp (MI-
NOLTA3D)

G. J. Klinker, S. A. Shafer, and T. Kanade, “The measurement of highlights in color images,” Interna-
tional Journal of Computer Vision, vol. 2, no. 1, pp. 7-32 (1988)

A. Levin and Y. Weiss, “User assisted separation of reflections from a single image using a sparsity
prior,” in Proceedings of European Conference on Computer Vision, pp. 602-613 (2004)

A. Levin, A. Zomet, and Y. Weiss, “ Separating reflections from a single image using local features,” in
Proceedings of |EEE Conference on Computer Vision and Pattern Recognition, pp. 306—313 (2004)

Y. Li, J. Sun, C. K. Tang, and H. Y. Shum, “Lazy snapping,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 303-308 (2004)

J.Lim, J. Ho, M. H. Yang, and D. Kriegman, “ Passive photometric stereo from motion,” in Proceedings
of IEEE International Conference on Computer Vision, pp. 1635-1642 (2005)

C.Luand M. S. Drew, “Practical scene illuminant estimation via flash/no-flash pairs,” in Proceedings of
Color Imaging Conference, (2006)

J. Lu and L. Little, “Reflectance function estimation and shape recovery from image sequence of a
rotating object,” in Proc. International Conference on Computer Vision, pp. 80-86 (1995)

S. Magda, D. J. Kriegman, T. Zickler, and P. N. Belhumeur, “Beyond Lambert: Reconstructing surfaces
with arbitrary BRDFS,” in Proceedings of | EEE International Conference on Computer Vision, pp. 391—
398 (2001)

. Y. Mukaigawa, Y. Ishii, and T. Shakunaga, “Analysis of photometric factors based on photometric lin-

earization,” Journal of the Optical Society of America A, vol. 24, no. 10, pp. 3326-3334 (2007)

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. J. Koppal, “Structured light in scattering media,” in
Proceedings of |EEE International Conference on Computer Vision, pp. 420-427 (2005)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Determining shape and reflectance of hybrid surface by photo-
metric sampling,” |EEE Transactions on Robotics and Automation, vol. 6, no. 4, pp. 418431 (1990)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “ Shape from interreflections,” International Journal of Computer
Vision, voal. 6, no. 3, pp. 173-195 (1991)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: Physical and geometrical perspectives,”
|EEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 7, pp. 6119-634 (1991)
S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global com-
ponents of a scene using high frequency illumination,” ACM Transactions on Graphics, vol. 25, no. 3,
pp. 935-944 (2006)



22

41.

42.

45.

47.

49.

50.

51.

52.

53.

55.

56.

57.

58.

59.

60.

61.

62.

63.

. T. Qishi, A. Nakazawa, R. Kurazume, and K. Ikeuchi, “Fast simultaneous alignment of multiple range

images using index images,” in Proceedings of International Conference on 3-D Digital Imaging and
Modeling, pp. 476483 (2005)

T. Oo, H. Kawasaki, Y. Ohsawa, and K. Ikeuchi, “ The separation of reflected and transparent layersfrom
real-world image sequence,” Machine Vision and Applications, vol. 18, no. 1, pp. 17-24 (2007)

G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama, “Digital photography
with flash and no-flash image pairs,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 664—672 (2004)
W. H. Press et al., Numerical recipesin C: the art of scientific computing, p. 994. Cambridge University
Press, Cambridge England (1997)

. H. Ragheb and E. R. Hancock, “ Surface normals and height from non-Lambertian image data,” in Pro-

ceedings of International Symposiumon 3D Data Processing, Visualization and Transmission, pp. 18-25
(2004)

R. Raskar, K. H. Tan, R. Feris, J. Yu, and M. Turk, “Non-photorealistic camera: Depth edge detection and
stylized rendering using multi-flash imaging,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 679—
688 (2004)

. C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive foreground extraction using iterated

graph cuts,” ACM Transactions on Graphics, vol. 23, no. 3, pp.=309-314 (2004)
B. Sarel and M. Irani, “ Separating transparent layers through layer information exchange,” in Proceed-
ings of European Conference on Computer \ision, pp. 328—-341 (2004)

. B. Sarel and M. Irani, “ Separating transparent layers of repetitive dynamic behaviors,” in Proceedings of

IEEE International Conference on Computer Vision, pp. 26-32 (2005)

Y. Sato and K. Ikeuchi, “Reflectance analysis under solar illumination,” in Proceedings of |EEE Work-
shop on Physics-Based Modeling and Computer Vision, pp. 180-187 (1995)

|. Sato, T. Okabe, Q. Yu, and Y. Sato, “ Shape reconstruction based on similarity in radiance changes
under varying illumination,” in Proc. International Conference on Computer Vision (2007)

Y. Y. Schechner, N. Kiryati, and R. Basri, “ Separation of transparent layers using focus,” International
Journal of Computer Vision, vol. 39, no. 1, pp. 25-39 (2000)

Y. Y. Schechner and J. Shamir, “ Polarization and statistical analysis of scenes containing a semireflector,”
Journal of the Optical Society of America A, val. 17, no. 2, pp. 276-284 (2000)

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of
IEEE International Conference on Computer Vision, pp. 1440-1447 (2005)

. L. Shen, T. Machida, and H. Takemura, “Efficient photometric stereo technique for three-dimensional

surfaces with unknown BRDF,” in Proc. Conference on Recent Advances in 3-D Digital Imaging and
Modeling, pp. 326-333 (2005)

D. Simakov, D. Frolova, and R. Basri, “Dense shape reconstruction of a moving object under arbitrary,
unknown lighting,” in Proceedings of IEEE International Conference on Computer Vision, pp. 1202—
1209 (2003)

F. Solomon and K. Ikeuchi, “ Extracting the shape and roughness of specular lobe objects using four light
photometric stereo,” |IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 4,
pp. 449454 (1996)

J. Sun, Y. Li, S. B. Kang, and H. Y. Shum, “Flash matting,” ACM Transactions on Graphics, vol. 25,
no. 3, pp. 772—778 (2006)

J. Sun, M. Smith, L. Smith, S. Midha, and J. Bamber, “Object surface recovery using a multi-light
photometric stereo technique for non-Lambertian surfaces subject to shadows and specularities,” Image
and Vision Computing, vol. 25, no. 7, pp. 1050-1057 (2007)

R. Szeliski, S. Avidan, and P. Anandan, “Layer extraction from multiple images containing reflections
and transparency,” in Proceedings of |EEE Conference on Computer Vision and Pattern Recognition,
pp. 246-253 (2000)

P. Tan, S. Lin, and L. Quan, “Resolution-enhanced photometric stereo,” in Proceedings of European
Conference on Computer Vision, pp. 58-71 (2006)

P. Tan, S. P. Mdllick, L. Quan, D. J. Kriegman, and T. Zickler, “Isotropy, reciprocity and the generalized
bas-relief ambiguity,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(2007)

K. Tang, C. Tang, and T. Wong, “ Dense photometric stereo using tensorial belief propagation,” in Pro-
ceedings of |EEE Conference on Computer Vision and Pattern Recognition, pp. 132-139 (2005)

S. Tominaga, M. Nakagawa, and N. Tanaka, “Image rendering of art paintings -total archives considering
surface properties and chromatic adaptation-,” in Proceedings of Color Imaging Conference, pp. 70-75
(2004)

. R.Y. Tsa, “An efficient and accurate camera calibration technique for 3D machine vision,” in Proceed-

ings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 364-374
(1986)



23

65. P. Tuand P. R. S. Mendonca, “Surface reconstruction via Helmholtz reciprocity with a single image
pair,” in Proceedings of |EEE Computer Society Conference on Computer \Vision and Pattern Recognition
(2003)

66. T.Wada, H. Ukida, and T. Matsuyama, “ Shape from shading with interreflections under a proximal light
source: Distortion-free copying of an unfolded book,” International Journal of Computer Vision, vol. 24,
no. 2, pp. 125-135 (1997)

67. R.J. Woodham, “Photometric method for determining surface orientation from multipleimages,” Optical
Engineering, vol. 19, no. 1, pp. 139-144 (1980)

68. R. J. Woodham, Y. Iwahori, and R. A. Barman, “Photometric stereo: Lambertian reflectance and light
sources with unknown direction and strength,” in Technical Report (1991)

69. T.P.WuandC. K. Tang, “Dense photometric stereo using amirror sphere and graph cut,” in Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 140-147 (2005)

70. T. P Wu and C. K. Tang, “Dense photometric stereo by expectation maximization,” in Proceedings of
European Conference on Computer Vision, pp. 159-172 (2006)

71. T. P Wy, K. L. Tang, C. K. Tang, and T. T. Wong, “Dense photometric stereo: a Markov random field
approach,” |IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1830—
1846 (2006)

72. J. Yang, D. Zhang, N. Ohnishi, and N. Sugie, “Determining a polyhedral shape using interreflections,”
in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 110-115 (1997)

73. A.L.Yuille, D. Snow, R. Epstein, and P. N. Belhumeur, “ Determining generative models of objects under
varying illumination: Shape and albedo from multipleimagesusing SVD and integrability,” International
Journal of Computer Vision, val. 35, no. 3, pp. 203-222 (1999)

74. L. Zhang, B. Curless, A. Hertzmann, and S. M. Seitz, “ Shape and motion under varying illumination:
Unifying structure from motion, photometric stereo, and multi-view stereo,” in Proceedings of |EEE
International Conference on Computer Vision, pp. 618-625 (2003)

75. T. Zickler, P.N. Belhumeur, and D. J. Kriegman, “Helmholtz stereopsis: Exploiting reciprocity for sur-
face reconstruction,” International Journal of Computer Vision, pp. 215-227 (2002)

76. T.E. Zickler, P.N. Belhumeur, and D. J. Kriegman, “Toward a stratification of Helmholtz stereopsis,” in
Proceedings of |[EEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)

A Minimization of L2-Norm

Here, we solve the following minimization problem.

// (P (2, 9))? + (py(z,9))? dady . (24)
We obtain the following Euler-Lagrange differential equation [11].

paz + pyy =0, (25)

constrained with Dirichlet boundary condition or Neumann boundary condition. We represent the discretiza-
tion of second-order derivative as follows.

pax(z,y) = p(z — 1,y) — 2p(z,y) + p(z + 1,y) (26)
pyy(,y) = p(z,y — 1) — 2p(z,y) + p(z,y + 1) . (27)

Asaresult, Eq. (25) becomes the following well-known formula.
1
p(z,y) = 7 (ple+1Ly) +p(x = Ly) +p(z,y = 1) +ple,y +1)) - (28)

Iteratively computing this formula for each pixel with Gauss-Seidel method under the boundary constraint
minimizes Eq. (24).
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B Minimization of L 1-Norm

Here, we solve the following minimization problem:

[ etz + 1oy @)l dody. (29)

We solve this problem heuristically. If we only concentrate on solving the p at pixel (z, y) when fixing the p
of other pixels, we just have to minimize the following for each pixel.

lpz(z,y)| + oy (=, y)| - (30)

There are two possibilities for discretizing first-order derivative.

pz(z,y) = p(x+ 1,y) — p(z,y) , (3D
or
pz(z,y) = p(z,y) — plz — 1,9) . (32)

We use both of these equations in order to decrease the discretization error as much as possible. Therefore,
we minimize the following formulainstead of Eq. (30).

lpz (2, )| + o (2, y)| + oy (z,9)| + oy (z, )]
= |p(z,y) — p(z + L, y)| + lp(z,y) — p(z — Ly)| + |p(z,y) — p(x,y + D] + |p(z,y) — p(z,y — 1)

4
= lp(x,v) — pil , (33)
=1
where
p1=p(x+1,y), p2 = p(x — 1,y), p3 = p(z,y + 1), pa = p(z,y — 1). (34)

By minimizing Eq. (33), we obtain the following formula

p(z,y) = median (p(z + 1,y), p(z — 1,9), p(z,y + 1), p(z,y — 1)) . (35)

Iteratively computing this formula minimizes Eq. (29).



